The upcoming 2030 ban on new petrol and diesel cars will transform UK motoring on a scale never seen before. This story is part of a wider analysis of the challenges faced by consumers, government and the automotive industry, what needs to happen, and how such drastic changes can be achieved over the next decade.
Read the rest of this series here: Countdown to year zero - what needs to happen by 2030?
What's the prognosis for better batteries in the next nine years?
Batteries continue to get better, and although there hasn’t been a step-change yet (such as solid-state or a different type of battery chemistry altogether), improvements have come from internal packaging, software and cooling. The latest EVs with 800V ultra-rapid-charging capability are an example of that, but lithium ion batteries are still too big, heavy and costly for mass EV roll-out.
Is the vaunted solid-state battery likely to be a goer?
These are seen as the holy grail for battery-electric vehicles. The difference between a solid-state and conventional lithium ion battery is the electrolyte, which is solid rather than liquid. It’s far safer, has double the capacity and charges quickly.
Toyota is considered a leading player in the field, having been working on the technology for the best part of a decade. According to a report by Nikkei Asia, Toyota expects the battery to deliver twice the range and be able to take a full charge in 10 minutes, and the plan is to show a concept car powered by one this year. Toyota isn’t alone; all battery cell manufacturers are hard at work researching the technology. If and when it arrives, maybe in the next five years, it’s likely to be a game-changer.
Could other tech, such as ultracapacitors, emerge?
Apart from liquid fuels, batteries are by far the most successful method of storing electrical energy for cars, because they’re energy dense (high capacity). Ultracapacitors store and release electricity quickly, are power-dense and are good for boosting power, but they don’t get close to the capacity of a lithium ion battery. As of today, there’s no production-ready alternative electrical storage technology that’s even remotely close to stealing the lithium ion battery’s crown.
Join the debate
Add your comment
A long way to go (as mentioned) and too expensive for the average person, if the 2030 deadline was meant to speed up uptake of electric cars its done the opposite for me, the idea of paying £40-50k on a similar sized, comfortable and tech laden car as my 3 year old euro 6 petrol car i paid £26k for, even with the benefits it simply doesn’t add up financially and yes i know you can buy cheaper electric cars but really I don’t want to downgrade to something worst and less practical but cost me the same especially now with the way this pandemic has changed the way office people like myself work is simply idiotic, without the commute, My petrol car isn’t damaging the environment much as I’m now only doing 10-15 miles a week not 300 miles i was doing. Don't get me wrong I would have considered a plug in hybrid as a next vehicle this year as they seem a good mix of convenience and electrification for the environment and with electric charging at my work it would have been s possibility but now I’m working from home in the knowledge I’ll never be going back to a 5 day a week I simply can’t justify £500 a months on a pcp for a new car, surely the government can meet its co2 goals by office people working from home, reducing traffic in cities anyway.
What a lot of people don't want to understand is, that development takes time, they can't have the idea and put it in cars the next week!, Toyota with there 800v charge in ten minutes sounds interesting, that really would be a no brainier if that's how EV develops.
So, summing up...There is still a long way to go before EV's are as practical, sustainable and affordable as ICE cars and fuel cells aren't even on the horizon.